crypto/elliptic/internal/fiat.P224Element.Mul (method)
39 uses
crypto/elliptic/internal/fiat (current package)
p224.go#L113: func (e *P224Element) Mul(t1, t2 *P224Element) *P224Element {
p224_invert.go#L39: t0.Mul(x, z)
p224_invert.go#L41: z.Mul(x, z)
p224_invert.go#L46: t1.Mul(z, t1)
p224_invert.go#L51: t1.Mul(t1, t2)
p224_invert.go#L55: t0.Mul(t0, t1)
p224_invert.go#L60: z.Mul(z, t1)
p224_invert.go#L65: t0.Mul(t0, t1)
p224_invert.go#L70: z.Mul(z, t1)
p224_invert.go#L75: z.Mul(z, t1)
p224_invert.go#L80: t0.Mul(t0, t1)
p224_invert.go#L84: z.Mul(z, t0)
crypto/elliptic/internal/nistec
p224.go#L99: x3.Mul(x3, x)
p224.go#L132: xx := new(fiat.P224Element).Mul(p.x, zinv)
p224.go#L133: yy := new(fiat.P224Element).Mul(p.y, zinv)
p224.go#L146: t0 := new(fiat.P224Element).Mul(p1.x, p2.x) // t0 := X1 * X2
p224.go#L147: t1 := new(fiat.P224Element).Mul(p1.y, p2.y) // t1 := Y1 * Y2
p224.go#L148: t2 := new(fiat.P224Element).Mul(p1.z, p2.z) // t2 := Z1 * Z2
p224.go#L151: t3.Mul(t3, t4) // t3 := t3 * t4
p224.go#L156: t4.Mul(t4, x3) // t4 := t4 * X3
p224.go#L161: x3.Mul(x3, y3) // X3 := X3 * Y3
p224.go#L164: z3 := new(fiat.P224Element).Mul(p224B, t2) // Z3 := b * t2
p224.go#L170: y3.Mul(p224B, y3) // Y3 := b * Y3
p224.go#L180: t1.Mul(t4, y3) // t1 := t4 * Y3
p224.go#L181: t2.Mul(t0, y3) // t2 := t0 * Y3
p224.go#L182: y3.Mul(x3, z3) // Y3 := X3 * Z3
p224.go#L184: x3.Mul(t3, x3) // X3 := t3 * X3
p224.go#L186: z3.Mul(t4, z3) // Z3 := t4 * Z3
p224.go#L187: t1.Mul(t3, t0) // t1 := t3 * t0
p224.go#L204: t3 := new(fiat.P224Element).Mul(p.x, p.y) // t3 := X * Y
p224.go#L206: z3 := new(fiat.P224Element).Mul(p.x, p.z) // Z3 := X * Z
p224.go#L208: y3 := new(fiat.P224Element).Mul(p224B, t2) // Y3 := b * t2
p224.go#L214: y3.Mul(x3, y3) // Y3 := X3 * Y3
p224.go#L215: x3.Mul(x3, t3) // X3 := X3 * t3
p224.go#L218: z3.Mul(p224B, z3) // Z3 := b * Z3
p224.go#L226: t0.Mul(t0, z3) // t0 := t0 * Z3
p224.go#L228: t0.Mul(p.y, p.z) // t0 := Y * Z
p224.go#L230: z3.Mul(t0, z3) // Z3 := t0 * Z3
p224.go#L232: z3.Mul(t0, t1) // Z3 := t0 * t1